Identification of the Cystic Fibrosis Transmembrane Conductance Regulator Domains That Are Important for Interactions with ROMK2
نویسندگان
چکیده
منابع مشابه
Functional interactions of HCO3- with cystic fibrosis transmembrane conductance regulator.
Disruption of normal cystic fibrosis transmembrane conductance regulator- (CFTR)-mediated Cl(-) transport is associated with cystic fibrosis (CF). CFTR is also required for HCO(3)(-) transport in many tissues such as the lungs, gastro-intestinal tract, and pancreas, although the exact role CFTR plays is uncertain. Given the importance of CFTR in HCO(3)(-) transport by so many CF-affected organ ...
متن کاملCystic Fibrosis Transmembrane Conductance Regulator
Description The cystic fibrosis transmembrane regulator (CFTR) gene codes for the CFTR protein; a chloride channel protein that helps in the transportation of chloride ions and water molecules across the cell membranes of lungs, liver, pancreas, and skin. CFTR is a member of the ATP-binding cassette family of membrane transport proteins, but appears to be unique within this family by functionin...
متن کاملCystic Fibrosis Transmembrane Conductance Regulator
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel exhibits lyotropic anion selectivity. Anions that are more readily dehydrated than Cl exhibit permeability ratios (P(S)/P(Cl)) greater than unity and also bind more tightly in the channel. We compared the selectivity of CFTR to that of a synthetic anion-selective membrane [poly(vinyl chloride)-tridodecylmethylammonium chl...
متن کاملChloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.
CFTR is a cyclic AMP (cAMP)-activated chloride (Cl-) channel and a regulator of outwardly rectifying Cl- channels (ORCCs) in airway epithelia. CFTR regulates ORCCs by facilitating the release of ATP out of cells. Once released from cells, ATP stimulates ORCCs by means of a purinergic receptor. To define the domains of CFTR important for Cl- channel function and/or ORCC regulator function, mutan...
متن کاملThe Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)
Cystic fibrosis affects about 1 in 2500 live births and involves loss of transmembrane chloride flux due to a lack of a membrane protein channel termed the cystic fibrosis transmembrane conductance regulator (CFTR). We have studied CFTR structure by electron crystallography. The data were compared with existing structures of other ATP-binding cassette transporters. The protein was crystallized ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2000
ISSN: 0021-9258
DOI: 10.1074/jbc.m910205199